
How To Use

BASIC

First do no worry for the first thing tou will see when starting the plugin:

this sort of black DOS window full of criptic warnings

warnings are NOT errors ..You have not to do anything with that you
may just minimize
(anyway that window will automatically close with the plugin)
You may minimize it but NOT close :that would crash the plugin

Few seconds after that black windows will pop out the real thing:
the plugin interface

You may be tempted to play with that sliders, but would be a delusion,
nothing will happen.
First you need to load the plugin with some filters .
As example with some filters from the GUF folder included in the pack
that contain 1500 already converted
Filter Factory filters...for that you should click on the "Filter Directories"
tab

This dialog works exactly as the Gimp preference dialog explained in
HOW TO INSTALL :
first a click on the icon to the right to create a new path,
then one to the icon most on the left (in the screenshoot is covered by the
tip) to search.
..and is done

This work only for already converted filter, (Guf) for the other you have
2 possibilities

Firs possibility is click on the "Filter Editor" tab and there use the
"Open" button, as explained below

You can load existing filters from this panel, too, regardless whether
they are located in your User Filter data directories or not. The User
Filter plug-in recognizes four different types of files that can be loaded:

1.*.guf – the native file format of the User Filter plug-in

2.*.8bf – a (Windows) binary filter for Photoshop

3.*.afs – a source file for Filter Factory or Filter Foundry

4.*.txt – a source file for the Plugin Commander

when saving filters, you should always save them to the native file
format of the User Filter plug-in that is .guf

once loaded filters are dispayed in the Filter Manager ...Note that
clicking on the filter name you may get a
preview of the default filter effect

Then the filtrel controls are available from the Filter Control tab
You may note the difference with image 2, this is the same tab but now
the controls are all active

This should be sufficent to start use the Filter Factory Converter
More may be found in the FAQ written by the plugin developer and
reported here below

There is anorther and much quicker way to load and convert Factory
Filters then do one by one from the Filters Editor tab
 That allow batch conversion , is quite easy

BUT since that function is not available directly from the plugin
interface but only
from (included) command line utilities is discussed on the next Charpter
"ADVANCED"

There also you will find everything on edit and create new filters, the
specific of GUF language and links for tutorials and guide
to the Filter Factory language

Filter Factory Converter (User Filter) FAQ
================================

Q: What does this plug-in do ?

A: This plug-in will enable you to use filters generated with
 Photoshop Filter Factory. These filters come in various
 file formats: text (.txt, .ffl, .afs) and binary (.8bf).
 There is a catch, however, in the fact that not all .8bf
 files are Filter Factory filters and thus are not under-
 stood by this plug-in.
 You can also write your own Filter Factory style filters
 with this plug-in and share them with users of the original
 Filter Factory.

Q: I already have the Photoshop filter interface plug-in pspi
 installed. So what is this plug-in good for then ?

A: The pspi plug-in will also be able to utilize the .8bf plug-ins
 generated by Filter Factory. But it has its drawbacks, since
 (a) the initialization takes up a lot time, (b) the menu gets
 clustered with filters (if you have quite some), and (c) every
 Filter Factory binary plug-in is at least 48K in size - for the
 "Andrew's Filters" collection this sums up to about 58M on your
 disc whereas the same collection as .guf will take only about
 1500K.
 Furthermore, there are also people who are not working on x86
 based machines. They would not be able to run pspi - but they
 can use this plug-in whatsoever.
 Filter Factory binary filters have also no means of localization.
 When you import those filters in User Filter, however, they can
 be localized by adding the locale data for the control tags that
 are defined by the filter. In addition, you also get a filter
 description (which is used as a tooltip in the Gimp's menu) and
 tooltips for the filter controls (all of which also can easily be
 adopted to the current locale).
 You can also translate the filters into native code Gimp plug-ins
 using the uf2c(1) tool. The size of the binary (with statically
 linked userfilter library) will then be somewhat smaller than a
 Filter Factory .8bf file. It will also execute faster than the
 same filter run by the byte-code interpreter of User Filter.

Q: But I like the idea of being able to access the filters from the
 filters menu of the image.

A: You can also do that with User Filter. In the Filter Manager
 dialog of the plug-in, you can select (or deselect) the filters
 you want in your Gimp menu (you will have to restart Gimp though,
 to take those changes into effect). You are still able to access
 any other filter through the manager panel or directly load them
 from the editor panel of the plug-in.
 The filters need to be in a writable directory though to make this
 happen (i.e. you won't be able to change the settings for filters
 in a system-wide data directory or in the data directory of another
 user).
 You can also translate the filter descriptions into native code
 plug-ins for the Gimp using uf2c(1). These will also install in
 the Gimp's menu once you've moved them into your plug-in directory.
 You need to make sure, however, that for the filter to be used in
 the stand-alone mode or as a binary plug-in, the "Category" of the
 filter needs to be set to a correct Gimp menu path.

Q: I checked the "Plug-in" column of a filter in the manager panel,
 but the filter does not show up in the Gimp's menu, even when I
 re-start the program.

A: You need to set a correct menu path for the filter in the "Category"
 entry of the editor panel. If you fail to comply, The Gimp cannot
 install the filter in its menu.

Q: I understand that the formulas for the filters get interpreted
 by the plug-in for every pixel in the image. This must be very slow.
 The .8bf Filter Factory plug-ins are surely quicker, because they
 are Windows executables, even if they load slower with pspi.

A: The .8bf Filter Factory binary plug-ins do just the same as this
 plug-in: they first byte-compile the formulas and then interpret
 the byte-compiled code.

Q: I understand that the original userfilter just worked on .8bf,
 .txt, .afs, and .ffl files. Why is there another file format now
 and what is it good for ?

A: The original file formats are a mess. They are unstructured and
 awful to parse. You can also damage them by editing the text
 format files in a normal text editor program, because this could
 destroy the way the end-of-line is handled in the files (some are

 formatted in the Mac way, others as DOS text etc.) which is
 important for the file load routines.
 Last, but not least, it is not possible to expand those formats.
 User Filter is not Filter Factory (although it might act like it
 and can understand its files). It already has a number of features
 that cannot be stored in the old file formats (e.g. a meta descrip-
 tion of what a filter does, the tooltips, or the locale data), but
 which are of interest to The Gimp. Also, future extensions (like
 new functions, mathematical constants etc.) cannot be handled by the
 old files, since there is no way to check the compatibility of a
 filter with the version of the plug-in that is in use. The new file
 format has a feature version information tag that is used for this
 purpose.

Q: I have used User Filter in the past with Gimp v1.x.x - now I cannot
 find the tons of filters that used to work with it although I have
 installed them correctly in the userfilter data directory.

A: Things have changed. The original file formats were a mess and
 induced several bugs. It has therefore been decided that the plug-
 in will only accept its new native file format as a proper filter
 description when looking for (new) filters in its data directories.
 You can still import the old filters (in the editor panel) or convert
 them with one of the command line utilities (8bf2guf(1), afs2guf(1),
 ffl2guf(1), and txt2guf(1)).

Q: But it is soooo slow - this is not usable for my monster size images.

A: Actually, it is quite fast - about 30% faster than the original (v0.8)
 plug-in - but since the byte code compiler can do only little optimi-
 zation, speed of the filter still depends highly upon the quality of
 the code written and the complexity of the formula.
 To get around this, there is a converter uf2c(1) which will produce
 a C source for a standalone GIMP plug-in from a filter description.
 This source can then be translated with an optimizing C compiler
 using gimptool(1) and put in the GIMP plug-ins directory.
<future-version>
 For your convenience, there is also a wrapper uftool(1) that automates
 this process (translate filter into C, apply gimptool) for you.
 A standalone plug-in produced by this tool should be significantly
 faster (although not quite as fast as a plug-in hand-written in C)
 than the byte-compiled filter.
</future-version>
 Still, in most cases, a slow-running filter means that it contains code,

 that could be optimized by the author.

Q: I have translated a filter with uf2c(1). Now, I want to extend it (add
 funtionality and/or locale data), but I seem to have lost the original
 filter file. Is there a way to decompile a plug-in created with uf2c ?

A: Yes and no. There is no way to decompile a plug-in created with an op-
 timizing C compiler (which is what you did). However, the filter code
 is still in the binary (it is needed for the control value presets, the
 labels / tooltips, and locale data; the formulas are not needed, but
 small enough to keep, so their extra payload does not really enlarge the
 memory footprint of a compiled plug-in significantly). You will be able
 to extract this data using the strings(1) command or your favourite data
 dumper, unless the plug-in source was generated using the --strip option
 of uf2c(1) (which removes comments and function code from the filter
 data).

Q: I downloaded a FF filter from the internet and it does not work.

A: Some FF filters use undocumented features (I have seen some using
 a value "t" for instance, which does not show up in the FF docu-
 mentation). Others include invalid characters in the code portion
 of the filter which might confuse the parser.
 If you happen to have a filter that results in syntax errors, it
 is most likely that it is because of one of the two reasons stated
 above. You then can correct the formula in the editor panel and
 save the corrected filter.
 There are also different versions of FF (Windows and Macintosh), that
 use different return values for certain trigonometric functions.
 User Filter uses the specification of the Macintosh variant of FF, so
 filters that have been written for the Windows version might need to
 be tweaked a little to give the intended result.
 If else the formulas compile alright but the filter does not work
 as expected, it is probably a bug in the code generator or the
 optimizer of User Filter treats. This should be, however, not very
 likely.

ADVANCED

1.2 User Filter Functional Language
Any filter consists of a set of functional expressions that are applied for each pixel in an image (or a
selection in the image respectively). The plug-in will apply these expressions in sequence R,G,B,A – this
means, that you can store the results of certain subexpressions and re-use them in the next channel's
functional expression.

The User Filter plug-in has been designed to be backward compatible with Filter Factory / Filter Foundry. It
will understand the same functional language that is understood by these Photoshop plug-ins. This means
that you can not only import filters that have been created with or for those plug-ins, but you can also use
any tutorial or manual from these plug-ins for your work with User Filter as well. However, since there exist
two versions of FF that differ from each other with regards to the values returned by certain functions and
some maximum values, you should consult the section about portability in order to get the intended results
with filters that have been written for FF.

Functional expressions follow a notation that closely resembles the syntax found in the “C” programming
language.

1.2.1 Constants

The User Filter functional language has two kinds of constants: “true” constants, i.e. those that have a
predefined value, image environment dependent constants, i.e. constants that have different values for every
image, and pixel environment dependent constants, i.e. constants that have different values for every pixel
within the image. Any of the named constants are often called “variables” in manuals and tutorials for Filter
Factory / Filter Foundry, but since they cannot be modified by any of the functional expressions, we rather
call them constants here.

file:///C:/Documents and Settings/Client/Documenti/fflconverter/FFLconverter-index.html#1.2.5 Portability|outline

Name Description

Integer literals Numeric values can be written in octal, decimal, and hexadecimal in the
same notation as in the “C” programming language, i.e. any number starting
with a 0 will be treated as an octal value, unless it also contains the digits 8
or 9; any number starting with 0x will be treated as a hexadecimal number.

rmin, gmin, bmin, amin,
cmin Minimum value that can be applied to the “red”, “green”, “blue”, “alpha”,

and “current” color channel (0).

rmax, gmax, bmax, amax,
cmax Maximum value that can be applied to the “red”, “green”, “blue”, “alpha”,

and “current” color channel (255). Note, that this value will change from a
true constant into an image dependent constant when wider color channels
will get supported1.

R, G, B, A, C Range of channel values such that R = |rmin...rmax|, G = |gmin...gmax|, B
= |bmin...bmax|, A = |amin...amax|, and C = |cmin...cmax|.

r, g, b, a, c Value of the current pixel in the “red”, “green”, “blue”, alpha”, and the
“current” color channel, where rmin <= r <= rmax , gmin <= g <= gmax ,
bmin <= b <= bmax, amin <= a <= amax, and cmin <= c <= cmax
respectively.

imin, umin, vmin Minimum color values in YUV color space, where imin = 0, umin = -56,
and vmin = -78.

imax, umax, vmax Maximum color values in YUV color space, where imax = 255, umax = 56,
and vmax = 78.

i, u, v Current pixel value in YUV color space, where imin <= i <= imax, umin
<= u <= umax, and vmin <= v <= vmax.

xmin, ymin Minimum horizontal and vertical coordinates (0).

xmax, ymax Maximum horizontal and vertical coordinates. This depends on the
dimensions of the image.

X, Y Range of horizontal and vertical image coordinates (width and height of the
image), such that X = |xmin...xmax|, and Y = |ymin...ymax|.

x, y Current horizontal and vertical coordinate of the pixel that is processed,
where xmin <= x <= xmax and ymin <= y <=ymax.

dmin Minimum angle within the image (0).

dmax Maximum angle within the image (1023)2.

1

D Range of angles within the image, so that D = |dmin...dmax| = 1024.

d Angle of the current pixel from the center of the image, where dmin <= d
<= dmax.

mmin Minimum distance (“magnitude”) of the current pixel from the center of the
image (0).

mmax Maximum distance (“magnitude”) of the current pixel from the center of
the image, where mmax = (M = (√(X² + Y²)) / 2) - 1.

M Range of magnitudes of the current pixel from the center of the image,
where M = |mmin...mmax| = (√(X² + Y²)) / 2.

m Distance (“magnitude”) of the current pixel from the center of the image
where mmin <= m <= mmax.

zmin Minimum channel index (0).

zmax Maximum channel index, depending on the color mode of the image, where
0 = Gray < GrayA < RGB < RGBA = 3.

Z Range of channel indexes within one pixel, so that Z = |zmin...zmax|.

z Channel index for the current expression, where 0 = R < G < B < A = 3.

Any of the “true” constants are treated like integer literals by the byte-code generator of User Filter and the
plug-in translator uf2c. There is no difference between writing the constant name or its integer representation
except where it comes to portability. The byte-code optimizer of User Filter will also reduce the code tree
for any constant subexpression, except where pixel dependent constants are used.

Unlike as it is documented in Filter Factory, using i, u, or v in your functions is not slower than using r, g, or
b.

1.2.2 Variables

There are no true variables in the User Filter functional language (since you cannot “assign” values). It is
possible, however, to store up to 256 different values in an indexed temporary store (and retrieve these
values later). See the “put (y, i)” and “get (i)” functions for more information.

1.2.3 Operators

The operators are used in the functional language of User Filter as are used in the “C” language and with the

2

file:///C:/Documents and Settings/Client/Documenti/fflconverter/FFLconverter-index.html#get()
file:///C:/Documents and Settings/Client/Documenti/fflconverter/FFLconverter-index.html#put()
file:///C:/Documents and Settings/Client/Documenti/fflconverter/FFLconverter-index.html#1.2.5 Portability|outline
file:///C:/Documents and Settings/Client/Documenti/fflconverter/FFLconverter-index.html#1.3.2 The uf2c Translator|outline

same semantical effects (except for the assignment operators, which are not available here).

All arithmetic operations are done using 32-bit integer values. There are neither floating point nor fixed
point operations.

All logical operations consider the value 0 being false, all other values being true. If a function or operation
returns the value of true, it will effectively return the numeric value 1.

Operator Syntax Description

, expression , expression Sequence. The comma operator is used to
chain multiple expressions into a single
expression. Execution of code is from left to
right – both subexpressions are evaluated and
the result value of the right expression is
returned.

?: expression ? expression :
expression

Conditional. The conditional operator
evaluates the expression before ? and if the
result is not 0 returns the result of the first
subexpression, else it returns the result of the
second subexpression. Only one of the two
conditional subexpressions is evaluated.

&& expression && expression Logical and. Returns 0 (false) if one of the
two subexpressions is 0 (false), else 1 (true).

|| expression || expression Logical or. Returns 1 (true) if one of the two
subexpressions is 1 (true), else 0 (false).

The logical operators are shortcut operators,
i.e. if the result of the first subexpression
would also be the result of both
subexpressions, only the first subexpression
gets evaluated (e.g. 1 || 0 or 0 && 1).

& expression & expression Bitwise and. For any bit that is set in both
expressions the bit is also set in the result.

^ expression ^ expression Bitwise exclusive or. Returns a set bit for any
bit that is set in the first or the second
subexpression, but not in both.

| expression | expression Bitwise inclusive or. Returns a set bit for any
bit that is set in one of the two subexpressions.

The bitwise operators are full-evaluation
operators, i.e. both subexpressions are

evaluated.

== expression == expression Equal to. Returns 1 (true) if the results of the
left and right subexpression are equal, else 0
(false).

!= expression != expression Not equal to. Returns 1 (true) if the results of
the left and right subexpression differ, else 0
(false).

< expression < expression Lesser than. Returns 1 (true) if the results of
the left subexpression is lesser than the result
of the right subexpression, else 0 (false).

<= expression <= expression Lesser than or equal to. Returns 1 (true) if the
results of the left subexpression is lesser than
or equal to the result of the right
subexpression, else 0 (false).

> expression > expression Greater than. Returns 1 (true) if the results of
the left subexpression is greater than the result
of the right subexpression, else 0 (false).

>= expression >= expression Greater than or equal to. Returns 1 (true) if
the results of the left subexpression is greater
than or equal to the result of the right
subexpression, else 0 (false).

<< expression << expression Bitwise shift left. Shifts the bits of the result of
the left subexpression result of the right
subexpression times left. This operation is
equivalent to an n-times multiplication of the
left subexpression with 2.

>> expression >> expression Bitwise shift right. Shifts the bits of the result
of the left subexpression result of the right
subexpression times right. This operation is
equivalent to an n-times division of the left
subexpression by 2.

* expression * expression Multiplication. Returns the result of
multiplication the left subexpression by the
right subexpression.

/ expression / expression Division. Returns the result of the left
subexpression divided by the right
subexpression. If the right subexpression

returns 0, the operation will return 1.

% expression % expression Modulo division. Returns the remainder of the
left subexpression divided by the right
subexpression. If the right subexpression
returns 0, the operation will also return 0.

+ expression + expression Addition. Returns the value of the left
subexpression plus the value of the right
subexpression.

- expression - expression Subtraction. Returns the value of the left
subexpression minus the value of the right
subexpression.

! ! expression Logical not. Returns 1 (true) if the result of the
right expression is 0 (false), else 0.

~ ~ expression Bitwise not. Inverts all bits in the result of the
right expression.

- - expression Negation. Returns the negative value of the
result of the right expression.

1.2.4 Functions

Function Description

ctl (i) Value of slider i, where 0 <= i <= 7 and 0 <= ctl (i) <= 255.

val (i, a, b) Value of slider i, where 0 <= i <= 7 and 0 <= ctl (i) <= 255 mapped onto the
range [a...b] so that a <= val (i, a, b) <= b.

map (i, n) Return entry n from mapping table i, where 0 <= n <= 255 and 0 <= i <= 3.
Each mapping table uses a pair of sliders, ctl (2 * i) and ctl(2 * i + 1) for the
high and the low values of the mapping table formula. The entries of the
mapping table are computed so that if n <= ctl (2 * i + 1) then 0 else if n >= ctl
(2 * i) then 255 else if ctl (2 * i + 1) < n < ctl (2 * i) then (n - ctl (2 * i + 1)) *
255 / (ctl(2 * i) – ctl(2 * i + 1)) else 0.

src (x, y, z) Return the channel value of the pixel at the cartesian coordinates x, y in color
channel z, where xmin <= x <= xmax, ymin <= y <= ymax, and zmin <= z <=
zmax. For off-image coordinates the channel value depends upon the setting of
the edge-mode control3. Using this function to read the channel value at the

3

current pixel coordinates is very inefficient; instead use r, g, b, a, or c.

rad (d, m, z) Return the channel value of the pixel at the polar coordinates d, m in color
channel z, where dmin <= d <= dmax, mmin <= m <= mmax, and zmin <= z
<= zmax. For off-image coordinates the channel value depends upon the setting
of the edge-mode control4.

cnv (m11, m12, m13,
m21, m22, m23, m31,
m32, m33, d)

The convolver function works similar to the Convolution Matrix filter of The
Gimp with the difference that the matrix is a little smaller. Every pixel of the
current color channel and its neighboring pixels are evaluated to get the result.
Please refer to the documentation of the Convolution Matrix filter for the
description of this function.

min (a, b) Return the lesser of a and b, so that if a < b then a else b.

max (a, b) Return the greater of a and b, so that if a > b then a else b.

abs (a) Return the absolute value of a, so that if a < 0 then -a else a.

add (a, b, c) Return the sum of a and b, or c, whichever is lesser, so that add (a, b, c) = min
(a+b, c).

dif (a, b) Return the absolute value of the difference of a and b, so that dif (a, b) = abs (a-
b).

sub (a, b, c) Return the difference of a and b, or c, whichever is greater, so that sub (a, b, c)
= max (dif(a, b), c).

rnd (a, b) Return a random number in range of [a...b], so that a <= rnd (a, b) <= b. The
random number generator is seeded with a value computed from the image that
is currently processed, thus guaranteeing that the applying the same filter on two
identical images will produce the same result. The control panel of the plug-in
will show a special control to set the random number seed to a different value
when the filter is using the random number function.

mix (a, b, n, d) Return the mixture of a and b by fraction n / d, so that if d = 0 then 0 else a * n /
d + b * (d - n) / d.

scl (a, il, ih, ol,
oh) Scale a from input range [il...ih] to output range [ol...oh].

sqr (x) Return the square root of x.

sin (d) Sine function of d where dmin <= d <= dmax and the result is -D <= sin (d)
<= D5.

cos (d) Cosine function of d where dmin <= d <= dmax and the result is -D <= cos (d)
<= D6.

tan (d) Bounded tangent function of d where -dmax/4 <= d <= dmax/4 and the result is

4
5
6

-D <= tan (d) <= D7.

r2x (d, m) Return the x displacement of the pixel that is m units away from the center of
the image at an angle of d.

r2y (d, m) Return the y displacement of the pixel that is m units away from the center of
the image at an angle of d.

c2d (x, y) Return the angle of the pixel at cartesian coordinate x, y from the center of the
image.

c2m (x, y) Return the distance of the pixel at cartesian coordinate x, y from the center of
the image.

put (v, i) Store a value v in the temporary store at index i, where 0 <= i <= 255. The
return value is so that if 0 <= i <= 255 then v else 0.

get (i) Fetches a value from the temporary store at index i, so that if 0 <= i <= 255
then value else 0.

1.2.5 Portability

The User Filter plug-in has been written with backwards compatibility with Filter Factory for Photoshop in
mind. That means that, as a rule of thumb, any filter that has been written with Filter Factory (or Filter
Foundry) will also work with User Filter and (with some limitations) vice versa. There are, however, certain
issues that needs to be taken care of when it comes to using an filter written for FF with User Filter or
writing a filter with User Filter that should be used with FF.

• Many filters written for FF use integer representation of certain values instead of the constants
provided. This is not only bad style, but leads to problems. User Filter uses the constant values also
used by the Macintosh version of Filter Factory, which in this aspect differs from the Windows
variant. When importing a filter, it should be made certain, that the right constants are used in the
filter code.

• Filter Factory only supported 8-bit wide color channels, as does the current version of User Filter.
The latter will change, however, when The Gimp will support wider color channels. This means, that
the constants for the maximum channel values will differ depending on the image being processed.
Many filters that have been written for FF do not use the constants for maximum channel width, but
use integer literals instead. This needs to be corrected in order to make these filters work properly
with future versions of User Filter and images that have wider color channels.

• Filters written with User Filter can also be exported to FF filters and used with FF with the same
results, except for the following cases:

• The filter depends upon the pixel-fetcher edge-mode option being different from FF's
default behavior (“smear”). In this case, the filter can be used in FF, but will produce
different results for processing off-image pixels than when used in User Filter.

7

• The filter source code exceeds 1024 characters in length per channel. In this case, it is
not possible to export this filter to a file format that can be read by FF, since this is a
limitation of FF that is not present in User Filter.

• The filter source code utilizes language extensions of User Filter. In this case, it is not
possible to export the filter to a file format understood by FF, since FF does not know
anything about these language extensions8.

Please note, that many authors of Filter Factory filters did not understand the difference between constants
like X (which is the number of values in a range) and xmax (which is the maximum value of a given range).
There are many cases where the maximum value if off by 1 due to this misunderstanding. Most of the cases,
you will not recognize this, because FF's mode for handling off-image values defaults to “smear”, but in
other cases you may see a 1-pixel wide artifact at the edge of the image after processing it with a filter.

1.3 User Filter External Tools
A set of external tools is provided with the User Filter plug-in which are meant as helper tools for importing
existing Filter Factory / Filter Foundry filters into the native filter file format of the User Filter plug-in and
to translate filter files into native plug-ins for The Gimp.

1.3.1 The 8bf2guf, afs2guf, ffl2guf, and txt2guf Command Line Utilities

These programs can be used to quickly convert many Filter Factory filters into the native filter file format of
the User Filter plug-in. They have been named, so that they match the filter filename extensions of the filter
file types they have been written for, i.e. use 8bf2guf to convert *.8bf filters, afs2guf to convert *.afs filters
and so on.

Since you can also load the FF filter file formats (except the *.ffl format, which is not a single filter, but
instead a collection of filters) from within the editor panel of the User Filter plug-in, these external utility
programs are meant for converting a larger number of filters at a time. For each filter processed by these
tools, a single filter file will be created in *.guf file format. Where necessary, these tools will also fill the
additional entries in the *.guf file with information (like tool-tips, filter description, version and date
information). However, filter conversion is not perfect (the least it is for the proprietary *.8bf binary format)
and User Filter can use a lot more information than Filter Factory or Filter Foundry are able to, so you will
most likely need to hand-tune the filter information in the editor panel of the plug-in to make them look nice
and integrate seamlessly in The Gimp (if you want to register them as stand-alone filters in The Gimp's
menu). Please refer also to the section about portability of this document for further things that you might
need to take care of in order to make the filters work as intended.

Please refer to the man-pages (8bf2guf(1), afs2guf(1), ffl2guf(1), txt2guf(1), 8bf(5), afs(5), ffl(5), guf(5)) for
more details.

1.3.2 The uf2c Translator

This program will translate a filter into the “C” source code required to produce a native plug-in for The
Gimp. These plug-ins will use the same user interface already known from the User Filter plug-in itself
when running a filter in stand-alone mode. As a rule of thumb, translated filters will execute faster than those

8

man:guf
man:ffl
man:afs
man:8bf
man:txt2guf
man:ffl2guf
man:afs2guf
man:8bf2guf
file:///C:/Documents and Settings/Client/Documenti/fflconverter/FFLconverter-index.html#1.2.5 Portability|outline

that are run from the User Filter plug-in itself, since the latter will be interpreted byte-code while translated
filters are machine code. However, do not expect too much of it – this will not turn a stock car into an F1
racer. Also, the User Filter plug-in is able to reduce the code tree significantly more than it is possible with a
translated version of the same filter. This is due to the fact that all user interface derived values can be
treated as constants prior to final application of the filter, while only compile-time optimization can be
performed on the translated filter. The speed gained from translating a filter with uf2c will be quite
noticeable for very complex filters though or for filters that use a lot of computation base on the current
pixel coordinates.

Please refer to the man-pages (uf2c(1), guf(5)) for more details.

Please note, that many of the existing filters (most of them written for Filter Factory) use integer representations of the maximum
channel values. This will lead to problems when wider color channels are used. Whenever a filter that has been written for
Filter Factory is to be used with User Filter, it should be checked that the correct constant is used.

Please note, that Filter Factory for Adobe Photoshop unfortunately used two different values for the return results of the
trigonometric functions (sin, cos, tan) in the Windows (512) and the Macintosh (1024) versions of the program. The User Filter
plug-in for The Gimp uses the value also used by the Macintosh version of Filter Factory. This may lead to different results
when using filters that have been written for the Windows variant of Filter Factory. When importing a filter, this should be
checked and corrected whenever necessary.

This is an Extension to the functionality of Filter Factory / Filter Foundry. Use the default edge-mode (“smear”) for fully
backwards compatible filters.

This is an Extension to the functionality of Filter Factory / Filter Foundry. Use the default edge-mode (“smear”) for fully
backwards compatible filters.

Please note, that Filter Factory for Adobe Photoshop unfortunately used two different values for the return results of the
trigonometric functions (sin, cos, tan) in the Windows (512) and the Macintosh (1024) versions of the program. The User Filter
plug-in for The Gimp uses the value also used by the Macintosh version of Filter Factory. This may lead to different results
when using filters that have been written for the Windows variant of Filter Factory. When importing a filter, this should be
checked and corrected wherever necessary.

Please note, that Filter Factory for Adobe Photoshop unfortunately used two different values for the return results of the
trigonometric functions (sin, cos, tan) in the Windows (512) and the Macintosh (1024) versions of the program. The User Filter
plug-in for The Gimp uses the value also used by the Macintosh version of Filter Factory. This may lead to different results
when using filters that have been written for the Windows variant of Filter Factory. When importing a filter, this should be
checked and corrected wherever necessary.

Please note, that Filter Factory for Adobe Photoshop unfortunately used two different values for the return results of the
trigonometric functions (sin, cos, tan) in the Windows (512) and the Macintosh (1024) versions of the program. The User Filter
plug-in for The Gimp uses the value also used by the Macintosh version of Filter Factory. This may lead to different results
when using filters that have been written for the Windows variant of Filter Factory. When importing a filter, this should be
checked and corrected wherever necessary.

Currently, User Filter does not have any language extensions, but several extensions are planned, like access to the current
foreground and background colors, access to another image or layer as alternative image sources, etc.

man:guf
man:uf2c

	How To Use
	1.2 User Filter Functional Language
	1.2.1 Constants
	1.2.2 Variables
	1.2.3 Operators
	1.2.4 Functions
	1.2.5 Portability

	1.3 User Filter External Tools
	1.3.1 The 8bf2guf, afs2guf, ffl2guf, and txt2guf Command Line Utilities
	1.3.2 The uf2c Translator

